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A new method using the enriched element-free Galerkin method (EEFGM) to model functionally graded piezoelectric materials
(FGPMs) with cracks was presented. To improve the solution accuracy, extended terms were introduced into the approximation
function of the conventional element-free Galerkin method (EFGM) to describe the displacement and electric fields near the
crack. Compared with the conventional EFGM, the new approach requires smaller domain to describe the crack-tip singular field.
Additionally, the domain of the nodes was not affected by the crack. Therefore, the visibility method and the diffraction method
were no longer needed. The mechanical response of FGPM was discussed, when its material parameters changed exponentially
in a certain direction. The modified 𝐽-integrals for FGPM were deduced, whose results were compared with the results of the
conventional EFGM and the analytical solution. Numerical example results illustrated that this method is feasible and precise.

1. Introduction

Functionally gradedmaterials (FGMs) are composite materi-
als formed of two or more constituent phases with a continu-
ously variable composition. During design, the requirements
of structural strength, reliability, and lifetime of piezoelec-
tric structures/components call for enhanced mechanical
performance, including stress and deformation distribution
under multifield loading. In recent years, the emergence
of FGMs has demonstrated that they have the potential to
reduce stress concentration and to provide improved residual
stress distribution, enhanced thermal properties, and higher
fracture toughness. Consequently, a new kind of material,
functionally graded piezoelectric materials (FGPMs), has
been developed to improve the reliability of piezoelectric
structures by introducing the concept of the well-known
FGM to piezoelectric materials [1].

At present, FGPMs are usually associated with particulate
composites where the volume fraction of particles varies
in one or several directions. One of the advantages of a
monotonous variation of volume fraction of constituent
phases is elimination of the stress discontinuities that are
often encountered in laminated composites and accordingly

avoidance of delamination-related problems. How all these
aspects can be improved and what the mechanisms might be
are popular topics which have received much attention from
researchers. Wang and Noda [2] investigated the thermally
induced fracture of a functionally graded piezoelectric layer
bonded to a metal. Ueda studied the fracture of an FGPM
strip with a normal crack [3, 4], a symmetrical FGPM
strip with a center crack [5], and an FGPM strip with a
two-dimensional crack [6, 7]. Li and Weng [8] solved the
problem of an FGPM strip containing a finite crack normal
to boundary surfaces. Hu et al. [9] studied the problem
of a crack located in a functionally graded piezoelectric
interlayer between two dissimilar homogenous piezoelectric
half planes. Rao and Kuna [10] presented an interaction
integral method for computing stress intensity factors (SIFs)
and the electric displacement intensity factor (EDIF) in
FGPM under thermoelectromechanical loading. Borrelli et
al. [11] used the energy-decay inequality technique to analyze
the decay behavior of end effects in antiplane shear deforma-
tion in piezoelectric solids and FGPMs. Zhong and Shang
[12] developed an exact solution for a functionally graded
piezothermoelectric rectangular plate. Dai et al. [13] con-
ducted a theoretical study of electromagnetoelastic behavior
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for an FGPM cylinder and sphere. They then extended
their solutions to include thermal effects [14]. Zhong and
Yu [15] analyzed the FGPM beam with arbitrarily graded
material properties along the beam thickness direction.
Based on the layerwise finite element model, Shakeri and
Mirzaeifar [16] performed a static and dynamic analysis of
a thick FGM plate with piezoelectric layers. Wang et al.
[17] analytically investigated the axisymmetric bending of
circular plates whose material properties varied with the
thickness. Using the Fourier transform technique, Chue and
Yeh [18] developed a system of singular integral equations
for angle cracks in two bonded FGPMs under antiplane
shear. Chen and Bian [19] studied the wave propagation
characteristics of an axially polarized, functionally graded,
piezoceramic cylindrical transducer submerged in an infinite
fluid medium. Ueda [20] addressed the problem of two
coplanar cracks in an FGPM strip under transient thermal
loading. Ben Salah et al. [21] examined the propagation of
ultrasonic guided waves in FGPMs. Wang et al. [22] studied
the singularity behavior of electroelastic fields in a wedge
with angularly graded piezoelectric material (AGPM) under
antiplane deformation. Chue and Yeh [23] extended the
results of the case of two arbitrarily oriented cracks in two
bonded FGM strips.

In the field of engineering technology, accurate solu-
tions computed with analytic methods are only available
in problems with relatively simple equations and regular
geometry. As for most problems, especially in the case of
complex engineering, analytic solutions cannot be computed.
Therefore, research has been going on formany years that has
led to the development of another approach—the numerical
method.With the rapid development and wide application of
computers, numerical analysis and theoretical investigation
and experimental investigation are considered as the three
major research approaches. As one of the most effective
tools for the study of mechanics, the finite element and
other numerical methods have been widely used in scientific
research and engineering practice. FEManalysis of piezoelec-
tric structures with a crack under dynamic electromechanical
loading was presented by Enderlein et al. [24]. A survey
on numerical algorithms for crack analyses in piezoelectric
structures to be used with FEM for determining fracture
parameters was presented by Kuna [25]. Béchet et al. [26]
presented an application of XFEM to the analysis of fracture
in piezoelectric materials. Nanthakumar et al. [27] analyzed
the multiple flaws in piezoelectric structures using XFEM
and level sets. Sharma et al. [28] analyzed a subinterface
crack in piezoelectric bimaterials with XFEM. Bouvier et
al. [29] studied the inverse problems in structural analysis:
application to atherosclerotic plaque elasticity reconstruction
by using the XFEM.

Compared with the extended finite element method,
however, element-freemethod has a unique feature in solving
the problems of crack growth, plastic flow of materials,
geometric distortion and phase transition, and singularity.
The notable feature of this method is that, in establishing
the discrete equation, it does not need mesh but only needs
to arrange discrete points in the global domain. Thus, it
not only avoids the complicated process of mesh formation,

but also greatly reduces the influence of mesh distortion.
Various meshless methods have been applied to the analysis
of smart materials and structures such as the meshless point
collocation method (PCM) [30], the point interpolation
meshfree method (PIM) [31], a novel truly hybrid meshless-
differential order reduction method (hM-DOR) [32], and
the local Petrov-Galerkin method (MLPG) [33]. Among
these meshless methods, the element-free Galerkin method
(EFGM) [34], developed by Belytschko et al., has good
compatibility and stability and will not have the problem
of shear locking of volume even in adopting linear primary
function. And fast convergence speed and high accuracy
can be achieved. EFGM was widely applied in fracture
mechanics. Rabczuk and Belytschko analyzed the problem
of a three-dimensional large deformation meshfree method
for arbitrary evolving cracks [35]. Rabczuk et al. deduced a
simplified meshfree method for shear bands with cohesive
surfaces [36].

In this study, a type of electromechanical-coupling
enriched element-free Galerkin method based on the
enriched EFGmethods [37, 38] is developed. Enriched terms
were introduced into the approximation function of the
conventional EFGM to describe the displacement and elec-
tric fields near the crack. Compared with the conventional
EFGM, this method only needs a small domain to describe
the crack-tip singular field. Furthermore, the domain of the
node is not affected by the crack without using the visibility
method and diffraction methods.

2. Basic Equations for
Two-Dimensional FGPM

The governing equations and the boundary conditions of
FGPM are briefly given.

Constitutive Equations. Consider

𝜎
𝑖𝑗
= C
𝑖𝑗𝑘𝑙
𝜀
𝑘𝑙
− e
𝑘𝑖𝑗
E
𝑘
,

D
𝑖
= e
𝑖𝑘𝑙
𝜀
𝑘𝑙
+𝜆
𝑖𝑘
E
𝑘

(1)

in which C
𝑖𝑗𝑘𝑙

, e
𝑘𝑖𝑗
, and 𝜆

𝑖𝑘
are the elastic, piezoelectric,

and dielectric constants, respectively. 𝜎
𝑖𝑗
, 𝜀
𝑘𝑙
, E
𝑘
, and D

𝑖
are

the stress tensor, strain tensor, electric field, and electrical
displacements.

Strains are related to displacements by the expression
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𝑗
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𝜀1 =
𝜕u1
𝜕x1
, (3)
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𝜕u3
𝜕x3
, (4)

𝛾13 =
𝜕u1
𝜕x3

+
𝜕u3
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, (5)

where u
𝑥
and u
𝑧
are, respectively, the displacements in 𝑥- and

𝑧-directions.
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The electric field is related to the electric potential by the
expression

E
𝑖
= −

𝜕𝜑

𝜕x
𝑖

. (6)

Types of Gradation. The properties of FGM are usually
assumed to have the same functions of certain space coor-
dinates. Exponential material gradation is commonly used
graded forms.

All the material constants including elastic constants,
piezoelectric parameters, and dielectric constants follow the
exponential law:

M
𝑖𝑗
= M0
𝑖𝑗
𝑒
𝛼𝑥
, (7)

whereM
𝑖𝑗
represents material constants such asC

𝑖𝑗𝑘𝑙
, e
𝑘𝑖𝑗
, or

𝜆
𝑖𝑘
,M0
𝑖𝑗
is the corresponding value at the plane 𝑥

3
= 0, and 𝛼

denotes a material graded parameter.
The field equations of electroelasticity are reduced to

two-dimensional form in the special cases: plane strain.
Considering a transversely isotropic FGPM, according to (1),
the𝑥-𝑦 plane is the isotropic plane, and one can employ either
the 𝑥-𝑧 or 𝑦-𝑧 plane for the study of plane electromechanical
phenomena. The plane strain conditions require that

𝜀22 = 𝜀23 = 𝜀12 = E2 = 0. (8)

By substitution of (10) into (1), we have

{{{{{{{{
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or inversely
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where 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, and 𝛿

𝑖𝑗
are the reduced material constants.

They are related to the elastic compliance tensor 𝑓
𝑖𝑗
, the

piezoelectric tensor 𝑔
𝑖𝑗
, and the dielectric impermeability

tensor 𝛽
𝑖𝑗
by the following relations [39]:

𝑎11 = 𝑓11 −
𝑓
2
12
𝑓11
,

𝑎13 = 𝑓13 −
𝑓12𝑓13
𝑓11

,

𝑎33 = 𝑓33 −
𝑓
2
13
𝑓11
,

𝑎55 = 𝑓55,

𝑏15 = 𝑔15,

𝑏31 = 𝑔31 −
𝑔31𝑓12
𝑓11

,

𝑏33 = 𝑔33 −
𝑔31𝑓13
𝑓11

,

𝛿11 = 𝛽11,

𝛿33 = 𝛽33 −
𝑔
2
31
𝑓11
.

(11)

Boundary Conditions. In electroelasticity theory, mechanical
boundary conditions are formulated just as in classical elas-
ticity theory. The electric boundary conditions are, however,
still controversial. The first attempt to define the electric
boundary conditions over crack faces was done by Parton
[40]. He assumed that although the magnitude of the normal
electrical displacement component at the crack face was
very small, the electrical displacement was continuous across
the crack faces. He used the following electric boundary
conditions:

𝜙
+
= 𝜙
−
,

𝐷
+

𝑛
= 𝐷
−

𝑛
.

(12)

Later, Hao and Shen [41] improved the above assumption by
taking the electric permeability of air in the crack gap into
consideration. In addition to (14), they presented an equation
for the boundary condition at crack faces:

𝐷
+

𝑛
= 𝐷
−

𝑛
,

𝐷
+

𝑛
(𝑢
+

𝑛
−𝑢
−

𝑛
) = − 𝜅

𝛼
(𝜙
+
−𝜙
−
) ,

(13)

where 𝜅
𝛼
is the permittivity of air. However, (15) has remained

disregarded for a long time due to its complex mathematical
treatment.

As pointed out by Suo et al. [42], the above assumption
is not physically practical as there will clearly be a potential
drop across the lower capacitance crack. This is particularly
true for those piezoelectric ceramics with permittivity 103
times higher than that in the air. For this reason, Deeg [43]
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Figure 1: The nodes of sets Ω
Γ
and Ω

𝐴
.

proposed another set of electric boundary conditions over
crack faces:

𝐷
+

𝑛
= 𝐷
−

𝑛
= 0. (14)

Equation (16) is derived from the constitutive equation 𝐷
𝑛
=

𝜅
𝛼
𝐸
𝑛
.
This is equivalent to having the crack surfaces free of

surface charge which is the electrical boundary condition.
Thus the electric displacement vanishes in the environment.

3. Electromechanical-Coupling Enriched
Element-Free Galerkin Method

Displacement u and electric potential𝜙were adopted as basic
field quantities for the solution of the enriched element-free
Galerkinmethod, and the displacement and electric potential
interpolation of a typical point x were conducted as follows:

u
𝑖𝐼 (x) = ∑

𝐼∈Ω

𝑁
𝐼 (x) u𝑖𝐼 + ∑

𝐼∈ΩΓ

𝑁
𝐼 (x)𝐻 (x) 𝑎𝑖𝐼

+ ∑

𝐼∈Ω𝐴

𝑁
𝐼 (x)

4
∑

𝑚=1
𝑇
𝑚 (𝑥) 𝑏𝑚𝐼,

(15)

𝜙
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𝑁
𝐼 (x)𝜙𝐼 + ∑
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𝑁
𝐼 (x)𝐻 (x)𝛼𝐼

+ ∑
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𝑁
𝐼 (x)

4
∑

𝑚=1
𝑇
𝑚 (𝑥)𝛽𝑚𝐼 ,

(16)

where 𝑁
𝐼
(x) is the MLS shape function at the point x. Ω is

the support domain. Ω
Γ
is a set of all nodes whose support

is cut by the crack. The set Ω
𝐴
is a set of all nodes that lie

within a fixed region around the crack tip. 𝑎
𝑖𝐼
and 𝑏

𝑚𝐼
are

the additional degrees of freedom of the displacement. 𝛼
𝐼

and 𝛽
𝑚𝐼

are the additional degrees of freedom of the electric
potential.

The first terms of (15) and (16) are the conventional
EFGM approximation which simulates the displacement and
electric potential fields. The second term is the displacement
and electric potential approximation function of the nodes in
Ω
Γ
.𝐻(x) is the Heaviside function:

𝐻(x) =
{

{

{

+1 if (x − x∗) ⋅ n ≥ 0

−1 if (x − x∗) ⋅ n < 0,
(17)

where x∗ is the projection of point x on the crack.

The last term in (15) and (16) is the displacement and
electric potential approximation function of the nodes inΩ

𝐴
.

𝑇(𝑥) is the branch functions given by

𝑇 (𝑥)

= [𝑇1 (𝑥) 𝑇2 (𝑥) 𝑇3 (𝑥) 𝑇4 (𝑥)]

= [√𝑟 sin 𝜃
2
√𝑟 cos 𝜃

2
√𝑟 sin 𝜃

2
cos 𝜃 √𝑟 cos 𝜃

2
cos 𝜃] ,

(18)

where 𝑟 and 𝜃 are polar coordinates in the local coordinate
system.

The set Ω
Γ
includes the nodes whose support contains

point x or is cut by the crack. The set Ω
𝐴
is nodes whose

support contains point x and crack tip xtip (see Figure 1).
The expression for the potential energy in the domain Ω

is given by

Π = ∫
Ω

1

2
𝜀
󸀠𝑇G𝜀󸀠𝑑Ω−∫

Ω

f󸀠u󸀠𝑑Ω−∫
Γ
𝜎

T󸀠u󸀠𝑑Γ

+∫
Γ
𝑢

1

2
𝛼
󸀠
(u󸀠 − u󸀠) 𝑑Γ,

(19)

where f󸀠 = { f
q }, T󸀠 = {T/q}, u󸀠 = {u/𝜙}, and 𝛼󸀠 =

{ 𝛼
𝑢

𝛼
𝜙 } are the generalized volume force vector, the given

generalized boundary force vector, the generalized boundary
displacement vector, and the generalized penalty function
coefficient vector, respectively.

In the expressions above,

𝜀
󸀠
=

{{{{{{{{

{{{{{{{{

{

𝜀
11

𝜀
33

𝛾
13

𝐸
1

𝐸
3

}}}}}}}}

}}}}}}}}

}

,

G =

[
[
[
[
[
[
[
[

[

c11 c13 0 0 e31
c13 c33 0 0 e33
0 0 c44 e15 0
0 0 e15 𝜆11 0
e31 e33 0 0 𝜆33

]
]
]
]
]
]
]
]

]

(20)

are the generalized strain matrix and generalized elastic
matrices.
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When the system reaches equilibrium, the potential
energy of the system is minimized. The use of the variation
principle on (9) and (10) leads to the equilibrium equation:

Ku󸀠 = f󸀠. (21)

The standard discrete equations is obtained,

[
K
𝑢𝑢

K
𝑢𝜙

K𝑇
𝑢𝜙

K
𝜙𝜙

]{
u

𝜙
} = {

f
q
} . (22)

For the enriched terms,
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𝑖𝑗
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𝑖𝑗
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= ∫
Ω

(B𝑎
𝑖
)
𝑇 eB𝜙
𝑗
𝑑Ω,

K𝑎𝛼
𝑖𝑗
= ∫
Ω

(B𝑎
𝑖
)
𝑇 eB𝛼
𝑗
𝑑Ω,

K𝑎𝛽
𝑖𝑗
= ∫
Ω

(B𝑎
𝑖
)
𝑇 eB𝛽
𝑗
𝑑Ω,

K𝑏𝜙
𝑖𝑗
= ∫
Ω

(B𝑏
𝑖
)
𝑇

eB𝜙
𝑗
𝑑Ω,

K𝑏𝛼
𝑖𝑗
= ∫
Ω

(B𝑏
𝑖
)
𝑇

eB𝛼
𝑗
𝑑Ω,
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K𝑏𝛽
𝑖𝑗
= ∫
Ω

(B𝑏
𝑖
)
𝑇

eB𝛽
𝑗
𝑑Ω,

K𝜙𝜙
𝑖𝑗
= ∫
Ω

(B𝜙
𝑖
)
𝑇

𝜆B𝜙
𝑗
𝑑Ω+∫

Ω

N
𝑖

𝑇
𝛼
𝜙N
𝑗
𝑑Ω,

K𝜙𝛼
𝑖𝑗
= ∫
Ω

(B𝜙
𝑖
)
𝑇

𝜆B𝛼
𝑗
𝑑Ω,

K𝜙𝛽
𝑖𝑗
= ∫
Ω

(B𝜙
𝑖
)
𝑇

𝜆B𝛽
𝑗
𝑑Ω,

K𝛼𝛼
𝑖𝑗
= ∫
Ω

(B𝛼
𝑖
)
𝑇
𝜆B𝛼
𝑗
𝑑Ω+∫

Ω

(N
𝑖
𝐻
𝑖
)
𝑇
𝛼
𝜙N
𝑗
𝐻
𝑗
𝑑Ω,

K𝛼𝛽
𝑖𝑗
= ∫
Ω

(B𝛼
𝑖
)
𝑇
𝜆B𝛽
𝑗
𝑑Ω,

K𝛽𝛽
𝑖𝑗
= ∫
Ω

(B𝛽
𝑖
)
𝑇

𝜆B𝛽
𝑗
𝑑Ω+∫

Ω

(N
𝑖
𝑇
𝑖
)
𝑇
𝛼
𝜙N
𝑗
𝑇
𝑗
𝑑Ω,

B𝑢 =
[
[
[

[

N
1,𝑥

0 ⋅ ⋅ ⋅ N
𝑛,𝑥

0

0 N
1,𝑦

⋅ ⋅ ⋅ 0 N
𝑛,𝑦

N
1,𝑦

N
1,𝑥

⋅ ⋅ ⋅ N
𝑛,𝑦

N
𝑛,𝑥

]
]
]

]

,

B𝑎 =
[
[
[

[

N
1,𝑥
𝐻
1
+ N
1
𝐻
1,𝑥

0 ⋅ ⋅ ⋅ N
𝑛,𝑥
𝐻
𝑛
+ N
𝑛
𝐻
𝑛,𝑥

0

0 N
1,𝑦
𝐻
1
+ N
1
𝐻
1,𝑦

⋅ ⋅ ⋅ 0 N
𝑛,𝑦
𝐻
𝑛
+ N
𝑛
𝐻
𝑛,𝑦

N
1,𝑦
𝐻
1
+ N
1
𝐻
1,𝑦

N
1,𝑥
𝐻
1
+ N
1
𝐻
1,𝑥

⋅ ⋅ ⋅ N
𝑛,𝑦
𝐻
𝑛
+ N
𝑛
𝐻
𝑛,𝑦

N
𝑛,𝑥
𝐻
𝑛
+ N
𝑛
𝐻
𝑛,𝑥

]
]
]

]

,

B𝑏 =
[
[
[

[

N
1,𝑥
𝑇
1
+ N
1
𝑇
1,𝑥

0 ⋅ ⋅ ⋅ N
𝑛,𝑥
𝑇
𝑛
+ N
𝑛
𝑇
𝑛,𝑥

0

0 N
1,𝑦
𝑇
1
+ N
1
𝑇
1,𝑦

⋅ ⋅ ⋅ 0 N
𝑛,𝑦
𝑇
𝑛
+ N
𝑛
𝑇
𝑛,𝑦

N
1,𝑦
𝑇
1
+ N
1
𝑇
1,𝑦

N
1,𝑥
𝑇
1
+ N
1
𝑇
1,𝑥

⋅ ⋅ ⋅ N
𝑛,𝑦
𝑇
𝑛
+ N
𝑛
𝑇
𝑛,𝑦

N
𝑛,𝑥
𝑇
𝑛
+ N
𝑛
𝑇
𝑛,𝑥

]
]
]

]

,

B𝜙 = [
N
1,𝑥

⋅ ⋅ ⋅ N
𝑛,𝑥

N
1,𝑦

⋅ ⋅ ⋅ N
𝑛,𝑦

] ,

B𝛼 = [
N
1,𝑥
𝐻
1
+ N
1
𝐻
1,𝑥

⋅ ⋅ ⋅ N
𝑛,𝑥
𝐻
𝑛
+ N
𝑛
𝐻
𝑛,𝑥

N
1,𝑦
𝐻
1
+ N
1
𝐻
1,𝑦

⋅ ⋅ ⋅ N
𝑛,𝑦
𝐻
𝑛
+ N
𝑛
𝐻
𝑛,𝑦

] ,

B𝛽 = [
N
1,𝑥
𝑇
1
+ N
1
𝑇
1,𝑥

⋅ ⋅ ⋅ N
𝑛,𝑥
𝑇
𝑛
+ N
𝑛
𝑇
𝑛,𝑥

N
1,𝑦
𝑇
1
+ N
1
𝑇
1,𝑦

⋅ ⋅ ⋅ N
𝑛,𝑦
𝑇
𝑛
+ N
𝑛
𝑇
𝑛,𝑦

] ,

(23)

and K𝑆𝑇
𝑖𝑗
= (K𝑆𝑇
𝑖𝑗
)
𝑇, 𝑆, 𝑇 = 𝑢, 𝑎, 𝑏, 𝜙, 𝛼, 𝛽.

4. A Modified 𝐽-Integral for Functionally
Graded Piezoelectric Materials

Owing to the influence of material inhomogeneity in func-
tionally graded piezoelectric materials, the standard 𝐽-
integral loses the path-independence. This section presents
a modified 𝐽-integral, which retains the features of the path-
independence.

The 𝐽-integral for piezoelectric material was deduced by
Pak [44] as

𝐽 = ∫
Γ

(ℎ𝑛
1
−𝜎
𝑖𝑗
𝑛
𝑗
𝑢
𝑖,1
+𝐷
𝑖
𝑛
𝑖
𝐸
1
) 𝑑𝑠, (24)

where ℎ is the electric enthalpy, Γ is an arbitrary contour
around the crack, and 𝑛

𝑖
is the unit outward normal compo-

nent along path Γ as shown in Figure 2:

ℎ =
1

2
𝐶
𝑖𝑗𝑘𝑙
𝜀
𝑖𝑗
𝜀
𝑘𝑙
−
1

2
𝜆
𝑖𝑗
𝐸
𝑖
𝐸
𝑗
− 𝑒
𝑖𝑘𝑙
𝜀
𝑘𝑙
𝐸
𝑖
, (25)

𝜎
𝑖𝑗
=
𝜕𝐻

𝜕𝜀
𝑖𝑗

= 𝐶
𝑖𝑗𝑘𝑙
𝜀
𝑘𝑙
− 𝑒
𝑘𝑖𝑗
𝐸
𝑘
, (26)

𝐷
𝑖
= −

𝜕𝐻

𝜕𝐸
𝑖

= 𝑒
𝑖𝑘𝑙
𝜀
𝑘𝑙
+𝜆
𝑖𝑘
𝐸
𝑘
. (27)
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Figure 2: 𝐽-integral path around a crack tip.
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Figure 3: Equivalent domain 𝐽-integral.

Note that the crack is considered to be impermeable and
traction-free.

Numerical determination of the 𝐽-integral is very difficult
because the contour, surface, and volume integrals should
be defined precisely in the grid. The closed integration path
is transformed into an equivalent domain integral (EDI) by
applying Gauss’s integral theorem, as can be seen in Figure 3.
According to the path independence, (24) could be written as

𝐽 = ∫
𝐴

(𝜎
11

𝜕𝑢
1

𝜕𝑥
+ 𝜏
12

𝜕𝑢
2

𝜕𝑥
−𝐷
1
𝐸
1
− ℎ)

𝜕𝑞

𝜕𝑥

+(𝜎
22

𝜕𝑢
2

𝜕𝑥
+ 𝜏
12

𝜕𝑢
1

𝜕𝑥
−𝐷
2
𝐸
1
)
𝜕𝑞

𝜕𝑦
,

(28)

where 𝑆 = Γ + Γ+ + Γ− − Γ
𝜀
, 𝑛
𝑖
is an outward normal vector,

and 𝑞 is a weighting function which must be continuous and
meet the following conditions:

𝑞 =
{

{

{

0, on Γ,

1, on Γ
𝜀
.

(29)

For the functionally graded piezoelectric material, the
influence of material inhomogeneity causes the standard 𝐽-
integral to lose the characteristic of the path-independence.
A modified 𝐽-integral for calculating the energy release rates
of functionally graded piezoelectric material was presented.

Substitute (7) into (17),

K0
𝑒
𝛼𝑥u󸀠 = f󸀠. (30)

Let 𝑒𝛼𝑥u󸀠 = u󸀠0, and (30) is found that

K0u󸀠0 = f󸀠, (31)

where (33) represents the equilibrium equation of the piezo-
electric plate whose material constants are the corresponding
values at the plane 𝑥 = 0 in FGPMs.

From (32) and (33), it can be observed that u󸀠0/u
󸀠
= 𝑒
𝛼𝑥.

Equations (3)–(6) could be rewritten into

𝜀
1
= 𝑒
𝛼𝑥 𝜕𝑢1

𝜕𝑥
1

, (32)

𝜀
3
= 𝑒
𝛼𝑥 𝜕𝑢3

𝜕𝑥
3

, (33)

𝛾
13
= 𝑒
𝛼𝑥
(
𝜕𝑢
1

𝜕𝑥
3

+
𝜕𝑢
3

𝜕𝑥
1

) , (34)

𝐸
𝑖
= − 𝑒
𝛼𝑥 𝜕𝜑

𝜕𝑥
𝑖

. (35)

Substituting (32)–(35) into (28), it is found that

𝐽FGPM = (𝑒
𝛼𝑥
)
2
⋅ 𝐽

0
𝑃

= (𝑒
𝛼𝑥
)
2

⋅ ∫
𝐴

(𝜎11
𝜕𝑢1
𝜕𝑥
+ 𝜏12

𝜕𝑢2
𝜕𝑥
−𝐷1𝐸1 − ℎ)

𝜕𝑞

𝜕𝑥

+(𝜎22
𝜕𝑢2
𝜕𝑥
+ 𝜏12

𝜕𝑢1
𝜕𝑥
−𝐷2𝐸1)

𝜕𝑞

𝜕𝑦
,

(36)

where 𝐽0
𝑃
denotes the 𝐽-integral of the piezoelectric plate

whose material constants are the corresponding values at the
plane 𝑥

3
= 0 in FGPMs. The standard 𝐽-integral has the

characteristic of the path-independence. So does the 𝐽FGPM.

5. Numerical Example

Case 1. The centrally cracked infinite FGPM plate is shown
in Figure 4. The height (2ℎ) and width (2𝑤) are both 0.4m
and the crack length (2𝑎) is 0.02m. The width of the plate
is 20 times the crack length which can be considered to be
large enough to simulate an infinite plate with a crack. The
positive 𝑥

3
direction is defined as the polarization direction.

The remote uniform distributed stress load is 𝜎∞ = 106 Pa.
The remote uniform distributed electric field intensity is
E∞ = −10

5 V/m. The crack is considered to be permeable
and traction-free. The positive 𝑥

3
direction is defined as the

gradient direction of FGPM.The electronmicrograph picture
of the crack is shown in Figure 5. The material gradation
function:𝑀

𝑖𝑗
= 𝑀
0

𝑖𝑗
𝑒
𝛼𝑥, 𝛼 = −1, −0.5, 0, 0.5, 1.
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Figure 4: FGPM plate with central crack.

The material properties at 𝑥
3
= 0 were as follows:

𝑐
11
= 13.9 × 10

10N/m, 𝑐
12
= 7.78 × 10

10N/m, 𝑐
13
=

7.43 × 10
10N/m, 𝑐

33
= 11.3 × 10

10N/m, 𝑐
44
= 2.56 ×

10
10N/m, 𝑒

31
= −6.98C/m2, 𝑒

33
= 13.84C/m2, 𝑒

15
=

13.44C/m2, 𝜀
11
= 6.00×10

−9 C/V⋅m, and 𝜀
33
= 5.47×

10
−9 C/V⋅m.

As the consequence of the symmetry of the problem,
symmetric boundary conditions are imposed; only half of the
plate needs to be modeled. In this process, 41 × 81 nodes
are uniformly distributed in the computational domain, using
40×80 background grids. In each grid, 4×4Gaussian integral
and cubic splineweight function are adopted. If a background
mesh is present, nodes and the vertices of the integration
usually coincide (as in conventional FEMmeshes).When cell
structures are utilized, a regular array of domains is created,
independently of the particle position. It is worth noting that
the 𝐵 matrix at a Gauss point is composed of two parts: the
standard and the enriched part, where the standard part is
always computed and the enriched part is only computed if,
in the nodes whose supports cover Gauss point, there exist
enriched nodes.

Owing to the existence of additional degrees of freedom,
the assembly procedure of stiffness matrix should be revised.
Virtual nodes are used to deal with these additional degrees
of freedom.One virtual node is added at aHeaviside function
enriched node and four virtual nodes are added at a tip
enriched node, as depicted in Figure 6. The number of these
virtual nodes starts from the total number of true nodes. For
example, if there are six nodes numbered from one to six, the
third node and fifth node are near tip enriched nodes, and the
second node, fourth node, and sixth node are enriched with
the Heaviside function. Then, we have 6 + 3 × 1 + 2 × 4 = 17
nodes. And then we add a virtual node numbered 7 at the
second node, add four virtual nodes numbered 8, 9, 10, and
11 at the third node, add a virtual node numbered 12 at the

fourth node, add four virtual nodes numbered 13, 14, 15, and
16 at the fifth node, and add a virtual node numbered 17 at the
sixth node.

The variation of displacements, 𝑢
1
and 𝑢

3
, electric poten-

tial, 𝜙, stresses, 𝜎
1
and 𝜎

3
, electric fields, 𝐸

1
and 𝐸

3
, and

electric displacements, 𝐷
1
and 𝐷

3
, are shown in Figure 7.

The material property gradient index 𝛼 takes five values:
−1, −0.5, 0, 0.5, and 1. As shown in Figure 7, Figure 7(a)
presents the displacement 𝑢

3
of𝑂𝐶 line. Figure 7(b) presents

the displacement 𝑢
1
of 𝐴𝐵 line. Figure 7(c) presents electric

potential 𝜙 of 𝑂𝐶 line. Figure 7(d) presents normal stress
𝜎
3
of 𝑂𝐶. Figure 7(e) presents normal stress 𝜎

1
of 𝐴𝐵.

Figure 7(f) presents electric field 𝐸
3
of 𝑂𝐶 line. Figure 7(g)

presents electric field 𝐸
3
of 𝐴𝐵 line. Figure 7(h) presents

electric displacement 𝐷
3
of 𝑂𝐶 line. Figure 7(i) presents

electric displacement𝐷
1
of 𝐴𝐵 line.

For different Gauss integral, the modified 𝐽-integral for
FGPM has been computed. The results are listed in Table 1.
The largest difference is only 2.08% when compared with
the analytical solution which had been obtained from (36).
Table 3 illustrates the accuracy of EFGM and EEFGM for
calculating the crack of different lengths instead of the
different gauss integral.

For a different number of nodes, the modified J-integrals
for FGPM have been computed. 21 × 41, 41 × 81, and 81 ×
161 nodes are uniformly distributed in the computational
domain, using 20×40, 40×80, and 80×160 background grids.
In each grid, 4× 4Gaussian integrals are adopted.The results
are listed in Table 2. From Table 2, it can be observed that the
accuracy of the results by EEFGM has been greatly improved
compared with the results by the conventional EFGM.

Case 2. The edge-cracked FGPM plate is shown in Figure 8.
The height (2ℎ) is 0.4 and the width (𝑤) is 0.2m. The crack
length (𝑎) is 0.02m, 0.04m, 0.06m, 0.08m, and 0.10m,
respectively. The positive 𝑥

3
direction is defined as the

polarization direction. The uniform distributed stress load is
𝜎
∞
= 10
6 Pa. The uniform electric field intensity is E∞ =

−10
5 V/m.The positive 𝑥

3
direction is defined as the gradient

direction of FGPM. The electron micrograph picture of the
crack is shown in Figure 5. The material gradation function:
𝑀
𝑖𝑗
= 𝑀
0

𝑖𝑗
𝑒
𝛼𝑥, 𝛼 = 0.5.

The material properties for PZT-5H are as follows:

𝑐
11
= 12.6×10

10N/m, 𝑐
12
= 5×10

10N/m, 𝑐
13
= 8.41×

10
10N/m, 𝑐

33
= 11.7 × 10

10N/m, and 𝑐
44
= 2.30 ×

10
10N/m;

𝑒
31
= −6.50C/m2, 𝑒

33
= 23.3C/m2, 𝑒

15
= 17.44C/m2,

𝜀
11

= 150.3 × 10
−10 C/V⋅m, and 𝜀

33
= 130 ×

10
−10 C/V⋅m.

In this process, 41×81 nodes are uniformly distributed in
the computational domain, using 40 × 80 background grids.
In each grid, 4 × 4 Gauss integral and cubic spline weight
function are adopted.

The modified 𝐽-integral for FGPM has been computed
as the crack is under different length. The results are listed
in Table 2. The largest difference is only 3% when compared
with the analytical solution. From the results listed in Table 2,
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2h

Figure 5: The electron micrograph of the 𝑥
3
direction and the crack.
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Figure 6: Enriched nodes around the crack.

it can be observed that the J-integral results obtained by
EEFGM have higher accuracy than those calculated by the
conventional EFGM.

It is important to note that it can approximately simulate
quasi-static crack propagation processwith the increase of the
crack length.

6. Conclusions

An alternative electromechanical-coupling enriched
element-free Galerkin method is proposed by introducing
extended terms into the approximation function of
conventional element-free Galerkin method to describe

the displacement and electric fields near the crack. The
major advantage of the present method is that it only needs a
small domain to describe the crack-tip singular field, and the
domain of the node is not affected by the crack. It can improve
the computational efficiency without the introduction of
the visibility and the diffraction methods, compared with
the conventional EFGM. A series of numerical examples for
infinite square plate with central cracks of FGPM is solved,
and the J-integrals are calculated. EEFGM has high precision
compared with the conventional EFGM with the material
property gradient index 𝛼 taking five values. The values of
𝐽-integrals agree well with the analytical solutions. EEFGM
can be considered as an alternative numerical method for
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Figure 7: Variation of physical quantities of 𝐴𝐵 and 𝑂𝐶 line.

Table 1: The modified 𝐽-integral under different Gauss integral (N/m).

𝛼 Analytical solution EFGM EEFGM
2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8

−1 −0.1431 −0.1387 −0.1402 −0.1408 −0.1401 −0.1409 −0.1416
−0.5 −0.3890 −0.3804 −0.3829 −0.3844 −0.3825 −0.3847 −0.3871
0 −1.0574 −1.0485 −1.0520 −1.0530 −1.0513 −1.0531 −1.0554
0.5 −2.8743 −2.8634 −2.8670 −2.8682 −2.8664 −2.8689 −2.8722
1 −7.8132 −7.8010 −7.8066 −7.8085 −7.8054 −7.8091 −7.8105
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Table 2: The modified 𝐽-integral under different number of nodes (N/m).

𝛼 Analytical solution EFGM EEFGM
21 × 41 41 × 81 81 × 161 21 × 41 41 × 81 81 × 161

−1 −0.1431 −0.1312 −0.1385 −0.1402 −0.1386 −0.1401 −0.1410
−0.5 −0.3890 −0.3768 −0.3815 −0.3832 −0.3820 −0.3835 −0.3860
0 −1.0574 −1.0432 −1.0502 −1.0524 −1.0502 −1.0519 −1.0538
0.5 −2.8743 −2.8587 −2.8594 −2.8637 −2.8591 −2.8613 −2.8720
1 −7.8132 −7.8006 −7.8058 −7.8081 −7.8023 −7.8088 −7.8114

Table 3: The modified 𝐽-integral under different Gauss integral (N/m).

Crack length/m Analytical solution EFGM Error EEFGM Error
0.02 −11.6700 −11.0545 5.27% −11.2731 3.40%
0.04 −23.3401 −22.3714 4.15% −22.5783 3.26%
0.06 −35.0101 −33.4458 4.47% −34.1697 2.40%
0.08 −46.6802 −44.6503 4.35% −45.3592 2.83%
0.10 −58.3502 −55.3427 5.15% −56.3740 3.39%

Po
lin

g

h

h

w

𝜎∞33

x3

E∞3

a o x1

Figure 8: FGPM plate with edge crack.

electromechanical-coupling problems. It may be potentially
attractive for extensions to dynamic fracture analysis of
piezoelectric materials.
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